
DATA SHEET

Nano Brass G1/8" internal thread Part number: 9NB-01xx-03x

Digmesa AG, Keltenstrasse 31, CH—2563 Ipsach / Switzerland Phone +41 (32) 332 77 77, Fax +41 (32) 332 77 88 www.digmesa.com Version 08 Namo Brass FHC #9NB-01xx-03x GB Page 1-7

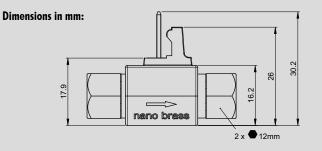
General Description

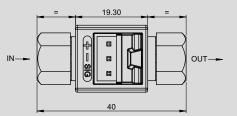
The Flow Sensor nano brass is a general-purpose device. It is employed for measuring, regulating or metering and guarantees most precise measurement of fluid quantities. In addition, a pulse generator integrated into the flowmeter guarantees a practically unlimited useful life.

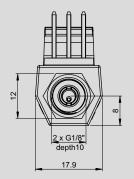
Materials (wetted)

Housing:	EcoBrass CW724R
noosing.	
Bearing :	PEEK
Nozzle:	PEEK
Turbine:	PVDF
Magnete:	Ceramic Sr Fe O (in contact with medium)

Specific applications: Straight flow path, compact design.


Approvals / Standards


EN55014-1:00+A1:01+A2:02, EN61000-6-3:01+A11:04, IEC61000-6-3:06(ed.2.0), EN61000-3-2:06, IEC61000-3-2:05(ed.3.0), EN61000-3-3:95+A1:01+A2:05, IEC61000-3-3:94+A1:01+A2:05(Cons.ed 1.2), EN55014-2:97+A1:01, EN61000-6-1:01, IEC61000-6-1:05(ed.2), LFGB (EU 1935 /2004, EU10/2011) CE (NSE)


Technical data:

Linear range:	from 0.035 - 0.70 l/min de- pending on the nozzle size
Durability:	min. 100'000 liters at max. flow (page 5-7)
Measuring accuracy:	+/- 2.0% *
Temperature range:	$+0^\circ\text{C}$ to $+100^\circ\text{C}$ 32°F to 212°F
Pressure range:	20 bar at 20°C 290 psi /68°F
Mounting position:	freely selectable
Nozzle size:	Ø 1.0mm, 1.2mm, 1.4mm
* Accuracy in the linear equipment	range for individually calibrated

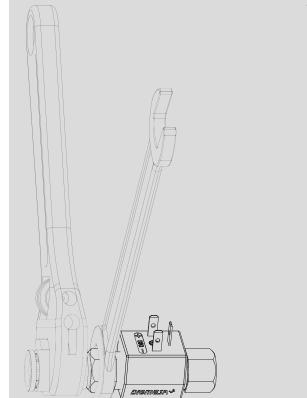
	COMPONENT
Electrical connect	tion ratings:
Power supply:	+2.8 to $+24$ VDC
Consumption:	<8 mA
Signal connection:	Open collector, NPN
Signal voltage:	0 VDC GND (saturation $<$ 0.7 V)
Signal load:	max. 20 mA
Leakage current:	max. 10 <i>µ</i> A
Connections:	PANCON MAS-CON 156 MLSS
Signal:	Square-wave output
Duty Cycle:	~50%

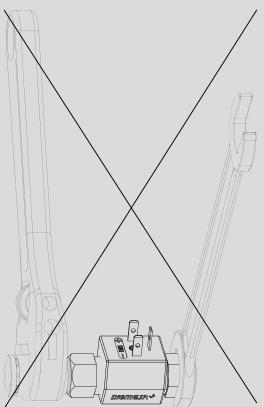
RESISTANCE

Special regulations which must be complied with by the flow sensor manufacturer apply to each country, e.g. CE, NSF, FDA and SK. The various media flowing through the flow sensor differ from application to application. You are advised to enquire with the medium manufacturer as to whether the entire installation and the flow sensor are resistant to the medium itself (see Material)!

ELECTRONIC

DIGMESA electronic circuitry is always designed for operation with DIGMESA flow sensors. Please note the following if connecting to other electronic circuitry:


• The flow sensor does not supply an output voltage but switches the signal terminal to 0 V ground (actuated) or leaves it open (nonactuated)


•There must be a pull-up resistor between power supply + and signal depending on electronic circuitry!

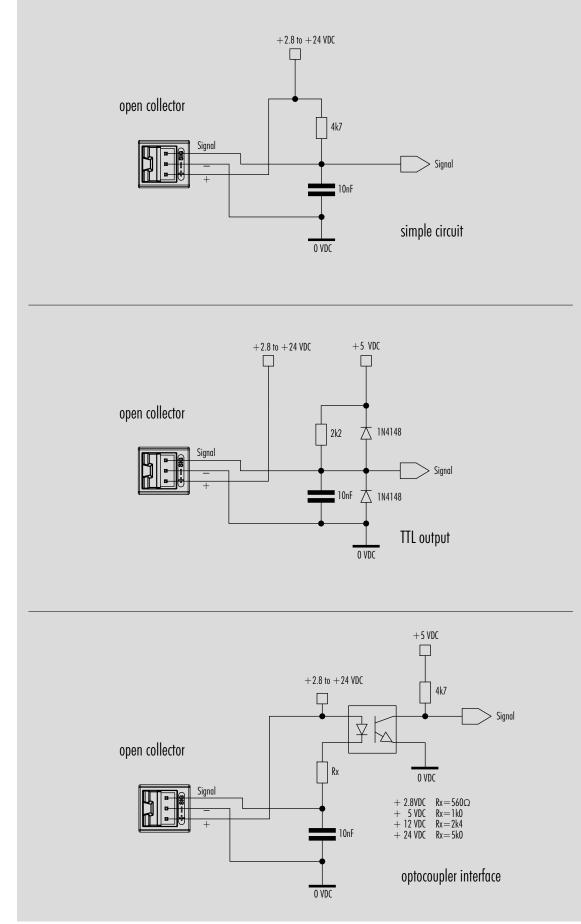
We reserve the right to make modifications in the interests of technical progress

Version 08 Nano Brass FHC #9NB-01xx-03x GB Page 2-7

Installation instruction

Important: Fittings should be mounted torsion-free, max. 10 Nm torque!

Drying and/or operating with compressed air destroys the flow sensor!

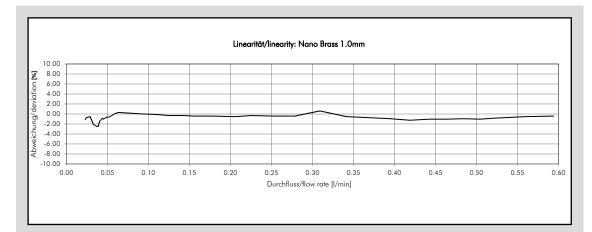


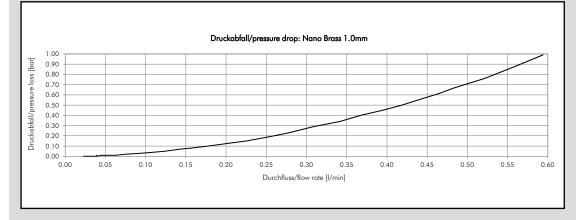
We reserve the right to make modifications in the interests of technical progress.

Version 08 Nano Brass FHC #9NB-01xx-03x GB Page 3-7

Digmesa AG, Keltenstrasse 31, CH–2563 Ipsach / Switzerland, Phone +41 (32) 332 77 77, Fax +41 (32) 332 77 88, www.digmesa.com

Interface Connection: Examples Open collector




We reserve the right to make modifications in the interests of technical progress.

Version 08 Nano Brass FHC #9NB-01xx-03x GB Page 4-7

Digmesa AG, Keltenstrasse 31, CH–2563 Ipsach / Switzerland, Phone +41 (32) 332 77 77, Fax +41 (32) 332 77 88, www.digmesa.com

Measurement Curve nano brass Ø1.0mm

Medium: Water / Pressure: 3.5 bar

#9NB-0100-03 with pulse divider

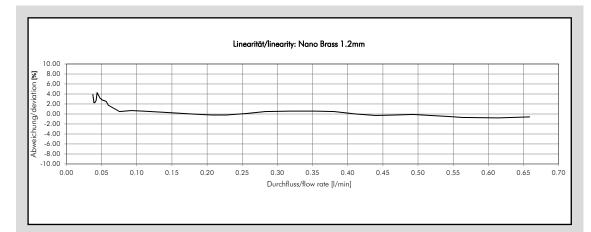
Nozzle size	Pulses/ Litre	ml/pulse	min. flow rate [l/min]	max. flow rate [l/min]	Pulse frequency [Hz] min/max
Ø 1.0 mm	2'494	0.40	0.035	0.40	~1.4/17

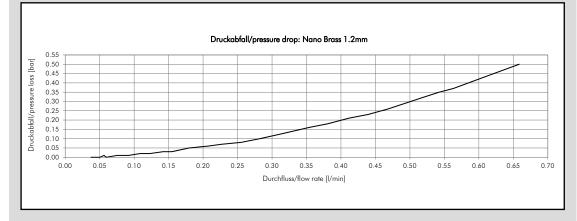
#9NB-0100-03A without pulse divider

Nozzle size	Pulses/ Litre	ml/pulse	min. flow rate [l/min]	max. flow rate [l/min]	Pulse frequency [Hz] min/max
Ø 1.0 mm	39'900	0.025	0.035	0.40	~23/270

The values specified must be considered as approximate values.

The number of pulses per litre may differ depending on medium and installation. We recommend to calibrate the number of pulses per litre in line with the complete installation.


We reserve the right to make modifications in the interests of technical progress.


MEASUREMENT TIPS

- Ensure that there is no fast-pulsatory movement of the media
- Ensure that there are no reverse pressure surges
- Ensure that there is no air in the system
- Keep the pressure loss as small as possible
- Pay attention to the mounting position of the flow sensor
- Min/max flow should be in the linear range of the selected flow sensor
- Clean the system at appropriate intervals
- Avoid electrical voltage spikes
- Incorrect wiring of power supply +, signal and ground will destroy the flow sensor
- Do not load electrical contacts mechanically
- Avoid moisture on the electrical contacts
- Avoid stray pick-up via the cable (Do not lay cables in parallel with high current loads)

Version O8 Nano Brass FHC #9NB-01xx-03x GB Page 5-7

Measurement Curve nano brass Ø1.2mm

Medium: Water / Pressure: 3.5 bar

#9NB-0120-03 with pulse divider

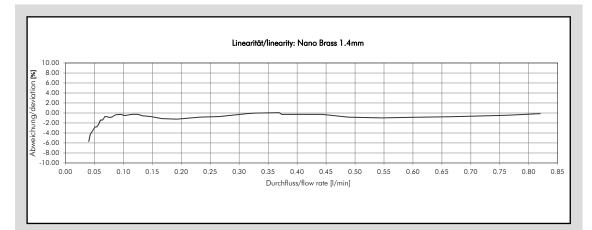
Nozzle size	Pulses/ Litre	ml/pulse	min. flow rate [l/min]	max. flow rate [l/min]	Pulse frequency [Hz] min/max
Ø 1.2 mm	1′944	0.51	0.05	0.50	~1.6/17

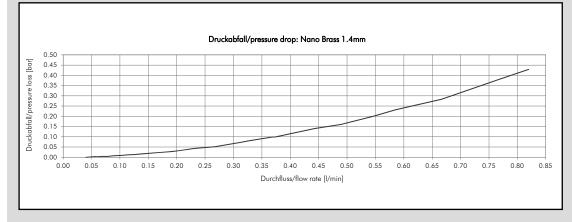
#9NB-0120-03A without pulse divider

Nozzle size	Pulses/ Litre	ml/pulse	min. flow rate [l/min]	max. flow rate [l/min]	Pulse frequency [Hz] min/max
Ø 1.2 mm	31'100	0.032	0.05	0.50	~26/270

The values specified must be considered as approximate values.

The number of pulses per litre may differ depending on medium and installation. We recommend to calibrate the number of pulses per litre in line with the complete installation.


MEASUREMENT TIPS


- Ensure that there is no fast-pulsatory movement of the media
- Ensure that there are no reverse pressure surges
- Ensure that there is no air in the system
- Keep the pressure loss as small as possible
- Pay attention to the mounting position of the flow sensor
- Min/max flow should be in the linear range of the selected flow sensor
- Clean the system at appropriate intervals
- Avoid electrical voltage spikes
- Incorrect wiring of power supply +, signal and ground will destroy the flow sensor
- Do not load electrical contacts mechanically
- Avoid moisture on the electrical contacts
- Avoid stray pick-up via the cable (Do not lay cables in parallel with high current loads)

We reserve the right to make modifications in the interests of technical progress.

Version O8 Nano Brass FHC #9NB-01xx-03x GB Page 6-7

Measurement Curve nano brass Ø1.4mm

Medium: Water / Pressure: 3.5 bar

#9NB-0140-03 with pulse divider

Nozzle size	Pulses/ Litre	ml/pulse	min. flow rate [l/min]	max. flow rate [l/min]	Pulse frequency [Hz] min/max
Ø 1.4 mm	1′440	0.69	0.06	0.70	~1.6/17

#9NB-0140-03A without pulse divider

Nozzle size	Pulses/ Litre	ml/pulse	min. flow rate [l/min]	max. flow rate [l/min]	Pulse frequency [Hz] min/max
Ø 1.4 mm	23′040	0.043	0.06	0.70	~26/270

The values specified must be considered as approximate values.

The number of pulses per litre may differ depending on medium and installation. We recommend to calibrate the number of pulses per litre in line with the complete installation.

MEASUREMENT TIPS

- Ensure that there is no fast-pulsatory movement of the media
- Ensure that there are no reverse pressure surges
- Ensure that there is no air in the system
- Keep the pressure loss as small as possible
- Pay attention to the mounting position of the flow sensor
- Min/max flow should be in the linear range of the selected flow sensor
- Clean the system at appropriate intervals
- Avoid electrical voltage spikes
- Incorrect wiring of power supply +, signal and ground will destroy the flow sensor
- Do not load electrical contacts mechanically
- Avoid moisture on the electrical contacts
- Avoid stray pick-up via the cable (Do not lay cables in parallel with high current loads)

We reserve the right to make modifications in the interests of technical progress.

Version 08 Nano Brass FHC #9NB-01xx-03x GB Page 7-7